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Abstract. An approach to the problem of Taylor dispersion in the Taylor vortex is given where
use of the slaving principle of Haken is made. This new approach is also used in the study of the
axial dispersion of particles with inertia in the Taylor vortex. An homogenization approach to
the derived dispersion equation is given, making use of the multiple scales perturbation theory.

1. Introduction

In 1953 Taylor studied the problem of advection and diffusion of a tracer by a Poisseuille
flow in a long pipe. Taylor showed analytically and experimentally that the effect of the
Poisseuille flow leads to enhanced dispersion in the axial direction. In more detail, Taylor
proved that the tracer experiences a mean flowU , equal to the average of the velocity of
the Poisseuille flow over the section of the pipe and that an effective diffusion in the axial
direction of the flow is given by

Deff = D + U
2a2

48D
whereD is the molecular diffusivity anda is the diameter of the pipe.

The results stirred the interest of the fluid dynamics community and since 1953 there
has been a continued interest in the problem, arising in different situations. Taylor’s results
have been re-derived using a number of different and more sophisticated techniques and
extended in a number of ways such as for instance in pipes with non-constant diameter,
biological situations etc. One of the first derivations of the Taylor result was obtained using
the method of moments, where by a proper averaging procedure an effective diffusion
coefficient was defined from the second moment of the probability distribution of the tracer.
More modern approaches employ ideas from dynamical systems theory and in particular
centre manifold theory and re-derive Taylor’s original result as a centre manifold expansion
around the neutral equilibrium of a properly defined dissipative dynamical system. A very
concise introduction to the subject is given in the review article by Young and Jones [7].

In this paper, we present an alternative approach to the problem of Taylor dispersion
using an application of the slaving principle [1]. Although conceptually close to the centre
manifold approach used by Mercer and Roberts [2], our method is simpler to use and
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extends naturally to the case where the flow field depends on the coordinate along which
the dispersion is studied. We also feel that it is more physically oriented than the central
manifold approach and conceptually easier to apply to more realistic flows, giving explicit
results, and space dependent effective transport coefficients (which is not so straightforward
using the centre manifold approach). The paper by Young and Jones [7] offers a detailed
discussion of the central manifold approach and mentions its connection with the slaving
principle. Both these papers only apply their results to the simple shear flow. Here we
use the shear flow as an example to illustrate our method and then go on to apply it to the
problem of axial dispersion in the Taylor vortex flow, both for a passive tracer and a tracer
with inertia. This leads to an equation of diffusion type with spatially varying transport
coefficients. Our results are easily generalizable for general periodic flows. A way of
homogenizing these space dependent transport coefficients using multiple scale perturbation
theory is given.

2. Taylor dispersion in a simple shear flow

In this section we illustrate the basic idea of our approach with the simple example of a
shear flow. Consider the simple shear flow in a long plane channel of width 2b so that

u = u(y)x. (1)

The probability distribution for a tracer advected with this flow under the effect of molecular
diffusion satisfies the advection diffusion equation

∂P

∂t
+ u(y)∂P

∂x
= D∂

2P

∂x2
+D∂

2P

∂y2
(2)

with D taken as a constant and with no flux boundary conditions at the walls of the channel

∂P

∂y
= 0 for y = ±b. (3)

We want to study the behaviour of this probability distribution for large distances along the
channel.

Because of the boundary conditions in they direction the operatorA = D(∂2/∂y2) is
a dissipative operator with discrete spectrum whose eigenfunctions form a complete set in
a properly chosen functional space. We can then expandP as

P =
∑
m

Am(x, t)wm(y) (4)

wherewm(y) are the eigenfunctions of the operatorA. In the particular case examined here
we have

wm(y) = cos
(mπ

2b
y + mπ

2

)
(5)

and the eigenvalue spectrum is

λm = m2π2

4b2
. (6)

Substituting this expansion forP into the advection diffusion equation and using the
orthogonality of the modes we find that

∂An

∂t
+
∑
m

1nm

σn

∂Am

∂x
= −DλnAn +D∂

2An

∂x2
(7)
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where

σn =
∫ b

−b
w2
n dy (8)

1mn =
∫ b

−b
u(y)wnwm dy. (9)

In the present caseσn = b if n 6= 0 andσ0 = 2b.
From these equations we notice that except for theA0 mode, all other modes experience

a damping because of the diffusion in they direction. The damping is seen to be stronger
the higher the mode number. TheA0 mode is a neutral mode. As a result of this the
y dependent modes will be short lived in comparison with they independent one. This
implies that the long time behaviour of the system will be dominated by the amplitude of
the neutral mode which we now consider to be an order parameter. It is then possible to
obtain an evolution equation for this order parameter which would in essence be an equation
for the evolution of they averaged probability distribution of the tracer.

The equation for theA0 mode is

∂A0

∂t
+
∑
m

10m

σ0

∂Am

∂x
= D∂

2A0

∂x2
(10)

which contains the interaction of the neutral mode with the other modes. We use the
slaving principle approximation on the other modes, which to the first-order simply means
neglecting the time derivatives in equation (7) as these modes are heavily damped [1]. We
then end up with a set of linear elliptic equations for the amplitudes of the other modes of
the form ∑

m6=0

1nm

σn

∂Am

∂x
+ 1n0

σn

∂A0

∂x
= −DλnAn +D∂

2An

∂x2
(11)

which have to be solved to give us the relation of the amplitude of the damped modes in
terms of the neutral mode. Formally we can solve these equations to give

An = an ∂A0

∂x
+ bn ∂

2A0

∂x2
+ HDT (12)

where HDT denotes higher derivative terms. From the nature of equation (10) we only
need the first term to give an effective diffusion equation forA0. This method gives us the
best Fokker–Planck equation forA0 in that we have neglected higher-order derivatives of
A0. The first term in this expansion gives

An = − 4b

n2π2D
10n

∂A0

∂x
(13)

which is formally equivalent to neglecting the spatial derivatives of the damped modes in
the slaving relations. Note that we do not neglect the spatial derivative of the neutral mode
which is considered to be an order of magnitude larger that the spatial derivatives of the
other modes.

Substituting this result in (10) we obtain an equation forA0 only, of the form

∂A0

∂t
+ 100

2b

∂A0

∂x
=
(
D +

∑
m6=0

12
m0

2b

4b

m2π2D

)
∂2A0

∂x2
(14)

which is an advection diffusion equation of the Fokker–Planck type. The coefficient in front
of the drift term is simply the average velocity in they direction. The effective diffusion
coefficient depends on the details of the shear flow. For concreteness let us assume that
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u(y) = 3/2U(1−(y/b)2). In this case10m = −(12bU/m2π2)((−1)m+1) and the effective
diffusion coefficient takes the form

De = D + 36U2b2

2π6D

∞∑
n=1

1

n6
= D + 2

105

U2b2

D
(15)

which is exactly the result obtained in [2] using a centre manifold approach. Note that for
D→ 0 the method breaks down as all the modes then vary on the same time-scale.

3. Axial dispersion in the Taylor vortex using the slaving principle approach

We now apply the formal procedure highlighted above for the simple shear flow, to the
case of the Taylor vortex. The probability distribution for a passive tracer in such a flow
satisfies the following advection diffusion equations

∂P

∂t
+ 1

r

∂(rurP )

∂r
+ ∂(uzP )

∂z
= Drr

1

r

∂

∂r

(
r
∂P

∂r

)
+Dzz

∂2P

∂z2
(16)

where an averaging over the azimuthal direction has been performed. (We have assumed
that the Taylor vortex flow is independent of the azimuthal angle.) We impose no-flux
boundary conditions at the cylinder walls, which because of the fact thatur = 0 at the
walls, simply become

∂P

∂r
= 0 r = r1, r2 (17)

wherer1 andr2 are the radii of the inner and outer cylinders respectively. We assume that
the cylinders are infinitely long.

The diffusion operator with the no-flux boundary conditions in ther direction is a
dissipative operator, with a discrete spectrum. The eigenfunctions of this operator form a
complete basis for a properly chosen functional space. We then can write

P =
∑
m

Am(z, t)wm(r) (18)

wherewn is a solution of the eigenvalue problem

D
1

r

d

dr

(
r

dw

dr

)
= −λw (19)

with
dw

dr
= 0 r = r1, r2. (20)

This eigenvalue problem can easily be solved in terms of Bessel functions. The
eigenfunctions are given byw = J0(br) + αY0(br) whereb = (λ/D) are the solutions
of the equation

J1(br1)Y0(br2)− J1(br2)Y0(br1) = 0. (21)

This equation has an infinite number of discrete solutions. From the asymptotic expansions
of the Bessel functions it is easy to see that the solutions for largem behave asbm ∝ m and
so the eigenvalue spectrum of this operator behaves asλm ∝ m2 similarly to the case of the
plane channel. Furthermore, the eigenfunctions corresponding to different eigenvalues are
orthogonal.

We now assume that the Taylor vortex flow has a velocity field of the form

ur = R1(r)R2(z) uz = Z1(r)Z2(z) (22)
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whereR1, R2, Z1 andZ2 are given functions andR2 andZ2 are periodic functions ofz.
Substituting the expansion (18) into (16) and using the orthogonality of the eigenfunctions
we obtain

∂An

∂t
−
∞∑
m=0

3mn

σn
AmR2(z)+

∞∑
m=0

3̄mn

σn

∂

∂z
(AmZ2(z)) = −λnAn +D∂

2An

∂z2
(23)

where

3mn =
∫ r2

r1

rZ1(r)wm
dwn
dr

dr 3̄mn =
∫ r2

r1

rR1(r)wmwn dr

and

σn =
∫ r2

r1

rw2
n dr.

As in the previous case we have a neutral modeA0 which is r-independent, which
serves as an order parameter, and all ther-dependent modes are damped for sufficiently
large time as a result of the action of the dissipative diffusion operator. The equation for
the evolution of the neutral mode is

∂A0

∂t
+
∞∑
m=0

3̄m0

σ0

∂

∂z
(AmZ2(z)) = D∂

2A0

∂z2
(24)

which contains the interaction ofA0 with the other modes. We now apply the slaving
principle to find expressions for the other modes in terms ofA0. In analogy with the
example of the shear flow we neglect the time derivatives of the ‘fast’ modes as well as
their spatial derivatives which are considered to be an order of magnitude smaller than their
values. This leaves us with a linear system of equations to solve for the instantaneous
values of the amplitudes of the ‘fast’ modes
∞∑
m′=1

(
3̄m′m

σm

dZ2

dz
− 3m′m

σm
R2

)
Am′ + λmAm = − 3̄0m

σm

∂

∂z
(Z2A0)+ 30m

σm
A0R2. (25)

This system is no longer diagonal as it was in the previous example, and therefore
solutions have to be found numerically. However, we can exploit the following
considerations to obtain an approximation to the exact slaving relations. We mentioned
earlier that the eigenvalue spectrumλm ∼ m2. On the other hand an elementary calculation
shows that all the coefficients3mn and3̄mn are of order one and in particular that∣∣∣∣ 3̄mm

σm

∣∣∣∣ 6 C1 = sup
r∈(r1,r2)

|Z1(r)|∣∣∣∣3mm

σm

∣∣∣∣ 6 C2 = 1

2
sup

r∈(r1,r2)

∣∣∣∣1r d

dr
(rR1(r))

∣∣∣∣.
We can see then that in system (25) the diagonal term is going to be dominant and all the
off-diagonal terms will introduce small corrections. It is reasonable then to propose the
following iterative scheme for the solution of (25)

A(n+1)
m = G(m, z)H(z,m,A0)+G(m, z)

∑
m6=m′,0

F(m,m′, z)A(n)m′ (26)

where

H(z,m,A0) = −3̄0m

σm

∂Z2A0

∂z
+ 30m

σm
A0R2
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G(m, z) =
(
λm + 3̄mm

σm

dZ2

dz
− 3mm

σm
R2

)−1

F(m,m′, z) = 3̄m′m

σm

dZ2

dz
− 3̄m′m

σm
R2.

In this paper we only consider the zeroth approximation to this iterative scheme which
simply gives

Am =
(
λm + 3̄mm

σm

dZ2

dz
− 3̄mm

σm
R2

)−1(
− 3̄0m

σm

∂Z2A0

∂z
+ 30m

σm
A0R2

)
. (27)

The results obtained using the next iteration are presented in the appendix of the paper.
Substituting this into the equation for the evolution of theA0 mode we find that

∂A0

∂t
+ 3̄00

σ0

∂

∂z
(Z2(z)A0)+

∞∑
m=1

3̄m030m

σ0σm

∂

∂z
(G(m, z)R2(z)Z2(z)A0)

= D∂
2A0

∂z2
+
∞∑
m=1

3̄2
m0

σ0σm

∂

∂z

(
G(m, z)Z2(z)

∂

∂z
(Z2(z)A0)

)
(28)

which we rewrite in the usual form

∂A0

∂t
+ ∂

∂z
(Ve(z)A0) = ∂

∂z

(
De(z)

∂A0

∂z

)
(29)

where

Ve(z) = 3̄00

σ0
Z2(z)+

( ∞∑
m=1

3̄m030m

σ0σm
G(m, z)R2(z)−

∞∑
m=1

3̄2
m0

σ0σm

dZ2(z)

dz

)
Z2(z)

De(z) = D +
( ∞∑
m=1

3̄2
0m

σ0σm
G(m, z)

)
Z2(z)

2

which are clearly periodic functions ofz. We can further exploit the fact that theλm are
considerably larger than3mm and3̄mm and expandG(m, z) in a Taylor series. This gives
an approximateDe of the form

De = D +
(
D1+D2

dZ2(z)

dz
+D3R2(z)

)
Z2(z)

2

D1 =
∞∑
m=1

3̄2
0m

σ0σm

1

λm

D2 =
∞∑
m=1

3̄2
0m

σ0σ 2
m

3̄mm

λ2
m

D3 = −
∞∑
m=1

3̄2
0m

σ0σ 2
m

3mm

λ2
m

and a similar expansion forVe. The sums involved in the definition ofD1,D2 andD3 are
clearly seen to converge since the eigenvalue spectrum behaves likem2. The next iteration
will clearly give corrections to this result, which again will be in the form of periodic
functions.

Concluding this section, we have applied the slaving principle approach to the problem
of diffusion and advection of passive tracer of the same density as the fluid in the
Taylor vortex flow and obtained an equation for the evolution of the neutral mode which
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corresponds to an effective Fokker–Planck equation for the average concentration over the
radial direction. Importantly, the transport coefficients are space dependent, thus exhibiting
in detail the effect of the Taylor vortex flow on the axial dispersion of the tracer. Explicit
forms of these coefficients are given.

4. Effect of particle inertia

In this section we are going to study the effect of particle inertia in the axial dispersion in
the Taylor vortex flow. We use a simple model for the inertial effects due to Druzhinin and
Ostrovsky [3] according to which the velocity of a small spherical particlev, with small
inertia and for small enough times is given by

v = u(r, t)+ γ Du
Dt

(30)

where the factorγ which is a measure of the inertial effects, is given by

γ = 2a2

9ν

ρf − ρp
ρf

(31)

whereν is the viscosity,ρf is the fluid density,ρp is the density of the particles,a is the
radius of the particle,D/Dt is the convective derivative andu is the velocity of the ambient
fluid.

For the case of the Taylor vortex flow where the ambient velocity field is

ur = R1(r)R2(z) uθ = uc(r)+ T1(r)T2(z) uz = Z1(r)Z2(z)

the velocity field that an inertial particle experiences is

upr = R1(r)R2(z)+ γ
(
R1Z1

dR2

dz
Z2+ R1

dR1

dr
R2

2 −
(uc + T1T2)

2

r

)
upz = Z1Z2+ γ

(
R1

dZ1

dr
R2Z2+ Z2

1Z2
dZ2

dz

)
.

We do not give explicitly theupθ component since it will drop out of the advection diffusion
equation for the tracer after averaging over the azimuthal direction.

We now highlight the derivation of the equation for axial dispersion for the velocity
field experienced by the inertial particles and give expressions for the effective dispersion
coefficients these tracers should feel. We see that in general the velocity field the tracer
experiences will be of the form

ur =
∑
q

R1q(r)R2q(z) (32)

uz =
∑
q

Z1q(r)Z2q(z). (33)

Using this velocity field in the advection diffusion equation we find that the equations for
the individual modes are

∂An

∂t
+
∑
mq

3(s)
mnq −3mnq

σn
R2q(z)Am + ∂

∂z

(∑
mq

3̄mnq

σn
Z2q(z)Am

)
= −λnAn +D∂

2An

∂z2

(34)
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where

3(s)
mnq = r2wm(r2)wn(r2)R1q(r2)− r1wm(r1)wn(r1)R1q(r1) (35)

3mnq =
∫ r2

r1

rR1qwm
dwn
dr

dr (36)

3̄mnq =
∫ r2

r1

rZ1qwmwn dr. (37)

Note that in this case we have to introduce the terms3
(s)
mni as in some cases the velocity

field experienced by the inertial particles might not necessarily vanish at the cylinder walls.
The use of the slaving principle is done in complete analogy with the case studied in the
previous section. Here we only quote the result of the diagonal approximation. This gives

Am = −G(m, z)
(
∂

∂z

(∑
q

3̄0mq

σm
Z2qA0

)
+
∑
q

(3
(s)

0mq −30mq)

σm
R2qA0

)
(38)

where

G(m, z) =
(
λm +

∑
q

3̄mmq

σm

dZ2q

dz
+ 3

(s)
mmq −3mmq

σm
R2q

)−1

. (39)

The equation for theA0 mode is

∂A0

∂t
+
∑
mq

3
(s)

m0q

σ0
R2q(z)Am + ∂

∂z

∑
mq

3̄m0q

σ0
Z2q(z)Am = D∂

2A0

∂z2
(40)

which after substitution of the expressions forAm provided by the slaving principle, and
some algebraic manipulations can be brought into the standard form

∂A0

∂t
+ Fe(z)A0+ ∂

∂z
(Ve(z)A0) = ∂

∂z

(
De(z)

∂A0

∂z

)
(41)

where

Fe(z) =
∑
q

3
(s)

00q

σ0
R2q −

∑
m6=0,q

3m0q

σ0

d

dz
(R2qG(m, z))

∑
j

3̄0mj

σm
Z2j

−
∑
m,q,j

3
(s)

m0q

σ0
R2q(z)G(m, z)

30mj −30mj

σm
R2qj

Ve(z) =
∑
q

3̄00q

σ0
Z2q +

∑
m6=0,q,j

3
(s)

m0q

σ0

3̄0mj

σm
R2qZ2jG(m, z)

−
∑

m6=0,q,j

3̄m0q

σ0

3
(s)

m0j −30mj

σm
Z2qR2jG(m, z)

−
∑

m6=0,q,j

3̄m0q

σ0

3̄m0j

σm
Z2q

dZ2j

dz
G(m, z)

De(z) = D +
∑

m6=0,q,j

3̄m0q

σ0

3̄m0j

σm
G(m, z)Z2qZ2j .
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In the particular case of the Taylor vortex

R10 = R1 R20 = R2 R11 = γR1Z1 R21 = dR2

dz
Z2

R12 = γR1
dR1

dr
R22 = R2

2

R13 = −γ u
2
c

r
R23 = 1 R14 = −2γ

ucT1

r
R24 = T2

R15 = −γ T
2

1

r
R25 = T 2

2

Z10 = Z1 Z20 = Z2 Z11 = γR1
dZ1

dr
Z21 = R2Z2

Z12 = γZ2
1 Z22 = Z2

dZ2

dz

and

3̄
(s)
mni = 0 i = 0, 1, 2, 4, 5

3̄
(s)

mn3 =
u2
c(r2)

r2
− u

2
c(r1)

r1
.

The results in this section show that the radially averaged concentration of tracer, with
different density than that of the ambient fluid, in the Taylor vortex evolves following a
Fokker–Planck equation of the form (4). It is interesting to note the emergence of the
Fe(z)A0 term which arises as a purely inertial effect and gives rise to the possible existence
of concentration zones in the flow due to the density difference of the tracer and the fluid.
Expressions for the transport coefficients are given which show explicitly the effect of
particle inertia.

5. Average diffusion coefficients

We see that in general the effective transport equation for ther-averaged probability
distribution has transport coefficients which are periodic functions ofz. This reflects the fact
that the tracer is advected and diffusing through a periodic array of Taylor vortices (through
in effect a periodic medium). In practice an initial concentration which is extended in space
will not respond to the fine scales of the periodic transport coefficients. Furthermore, even
for initial concentrations resembling delta functions the periodic structure of the transport
coefficients will be relevant only for the small time regime when the tracer is within a
single Taylor vortex. For more realistic times the particle will experience the effect of many
vortices whose effect we model by introducing suitably averaged transport coefficients. In
applications, the main interest is, in general, in this time regime, that is the large time (and
consequently the large spatial) scales regime. In this section we propose a multiple scales
perturbative approach, in the spirit of [4]† which will give us the long time evolution of the
probability distribution.

As our results will be valid for any general periodic flow field we start with a general
advection diffusion equation of the form

∂P

∂t
+ ∂

∂z

(
V
(
z,
z

ε

)
P
)
+ A

(
z,
z

ε

)
P = ∂

∂z
D
(
z,
z

ε

) ∂P
∂z

(42)

† Where no drift was taken into consideration.
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whereV is the drift velocity andD is the diffusion coefficient. We definez1 = ε−1z0

(a fast scale),z0 = z (a slow scale) andt0 = t , t1 = ε−1t0 and t2 = ε−2t0. In this notation
z1 denotes the spatial scale of each single Taylor vortex, whereasz0 is the scale of a large
number of vortices. The transport coefficients are periodic in the scalez1 and, in our cases
discussed earlier, are independent of thez0 scale but we leave this dependence in, for the
sake of generality.

Expanding in these multiple scales and using the ansatzP = P0 + εP1 + · · · for the
probability distribution we obtain to the first few orders

∂

∂z1
D
∂P0

∂z1
= ∂P0

∂t2
(43)

∂

∂z0
D
∂P0

∂z1
+ ∂

∂z1
D
∂P0

∂z0
+ ∂

∂z1
D
∂P1

∂z1
− ∂

∂z1
(V P0) = ∂P1

∂t2
+ ∂P0

∂t1
(44)

∂

∂z0
D
∂P0

∂z0
+ ∂

∂z0
D
∂P1

∂z1
+ ∂

∂z1
D
∂P1

∂z0
+ ∂

∂z1
D
∂P2

∂z1

= ∂P0

∂t0
+ ∂P1

∂t1
+ ∂P2

∂t2
+ ∂

∂z0
(V P0)+ ∂

∂z1
(V P1)+ AP0. (45)

Averaging the first equation overt2 and imposing the periodicity condition onz1 we find that
P̄0 is only dependent onz0, where the overbar denotes averaging overt2. Then averaging
the second equation overt1 and t2 we obtain that

D

(
∂ ¯̄P1

∂z1
+ ∂
¯̄P0

∂z0

)
+ V ¯̄P0 = C(z0) (46)

where the double overbars denote averaging over botht1 andt2. Then the next order equation
gives, after averaging over botht1 and t2 and imposing periodicity inz1, the consistency
condition

∂ ¯̄P0

∂t0
= ∂

∂z0

(
〈D〉∂

¯̄P0

∂z0
+
〈
D
∂ ¯̄P1

∂z1

〉
+ 〈V 〉 ¯̄P0

)
+ 〈A〉 ¯̄P0 (47)

where 〈 〉 denotes averaging over the variablez1 (over a periodic cell). This equation is
equivalent to

∂ ¯̄P0

∂t0
= ∂

∂z0
C(z0)+ 〈A〉 ¯̄P0. (48)

From (46) we can see that̄̄P1 can be given by an ansatz of the form

¯̄P1 = g(z1)
∂ ¯̄P0

∂z0
+ f (z1)

¯̄P0+ P̃0(z0)

wheref andg are periodic functions. Substituting this ansatz in (46) we obtain

∂ ¯̄P0

∂z0

(
1+ dg

dz1

)
+ ¯̄P0

(
df

dz1
+ V
D

)
= C(z0)

D
(49)

which when averaged overz1 (taking into account the periodicity off andg in z1) gives
us the consistency condition that

C(z0) = Da

∂ ¯̄P0

∂z0
+Da

〈
V

D

〉
¯̄P0 (50)
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and (dropping the double bars) we find thatP0 on the large space and time scale satisfies
the equation

∂P0

∂t0
= ∂

∂z0

(
Da

∂P0

∂z0
+ VaP0

)
+ 〈A〉P0

Da =
〈

1

D

〉−1

Va = Da

〈
V

D

〉
. (51)

This is the averaged (homogenized) advection diffusion equation which is valid in the large
scales. In the present context, this will be the transport equation for the tracer after it has
encountered a large number of rolls. These suitably averaged transport coefficients can
easily be calculated from the spatially dependent effective transport coefficients, obtained
by the use of the slaving principle, giving us an overall (averaged) picture of the transport
of the tracer in the Taylor vortex flow for long times.

6. Example: axial dispersion in the Davey–DiPrima–Stuart model for the Taylor
vortex

We now apply these results to a specific model for the Taylor vortex due to Davy, DiPrima
and Stuart [6]. This model is based on an asymptotic solution of the Navier–Stokes equations
in the small gap limit. The derivation of the model is rather lengthy so we just present the
form of the velocity field and refer the reader to the original paper of Davey, DiPrima and
Stuart for more details.

The velocity field for the Taylor vortex flow is

ux = δ�0(−2α(δT )1/2)Acf20(x) cos(z) (52)

uφ = δ�0d
−1(1− αx + Acf0(x) cos(z)) (53)

uz = δ�0(−2α(δT )1/2)Acf30(x) sin(z) (54)

whereAc is a constant

�0 = �1+�2

2
α = 2

(
1− µ
1+ µ

)
µ = �2

�1
(55)

�1 is the angular velocity of the inner cylinder and�2 is the angular velocity of the outer
cylinder. The radii of the cylinders areR1 andR2 with R2 > R1 and

R0 = R1+ R2

2
d = R2− R1 δ = d

R0
(56)

and the coordinates are defined as

R = R0+ xd Z = zd (57)

and (R, θ, Z) are cylindrical polar coordinates.T is the Taylor number. The functions
f0, f20 and f30 are functions of the radial coordinatex and are given by the solution of
boundary value problems. For more details on the boundary value problems these functions
will have to satisfy the reader is referred to [5] and [6].

In the small gap limit the advection diffusion equation simplifies to

∂P

∂t
− α1

∂

∂x
(uP )− α2

∂

∂z
(wP ) = D̄1

∂2P

∂x2
+ D̄2

∂2P

∂z2
(58)
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where

α1 = �0Ac

α
√
T aδ

α2 = 2λ�0Ac

α
√
T aδ

D̄1 = Drr

δ2R2
0

D̄2 = Dzzλ
2

δ2R2
0

u = f20(x) cos(z) w = f30 sin(z).

The boundary condition is the no-flux (Neumann) boundary condition atx = ±0.5. We
notice that in the small gap limit the cylindrical geometry degenerates into plane geometry
which simplifies immensely the solution of the eigenvalue problem in thex direction.

Using the notation of the previous sections we writeP =∑∞m=0Amwm(x) where now
wm = cos(mπx + (mπ/2)) and the eigenvalue spectrum isλm = D̄1m

2π2. The mode
amplitudes satisfy the equations

∂An

∂t
− cos(z)

∑
m

α1
1̄mn

σn
Am −

∑
m

α2
1mn

σn

∂

∂z
(sin(z)Am)− D̄1n

2π2An + D̄2
∂2An

∂z2
(59)

where

1mn =
∫ 0.5

−0.5
f30wmwn dx

1̄mn = −
∫ 0.5

−0.5
f20wm

dwn
dx

dx.

The slaving relations in this case become

−2 cos(z)
∑
m6=0

(α11̄mn + α21mn)Am = −D̄1n
2π2An + 2α210n sin(z)

∂A0

∂z
(60)

and the diagonal approximation gives

An = 2α10n sin(z)
∂A0

∂z
(D̄1n

2π2− 2(α11̄nn + α21nn) cos(z))−1. (61)

Insertion of this result in the equation for the evolution of the neutral mode gives

∂A0

∂t
= ∂

∂z
(UeA0)+ ∂

∂z

(
De

∂A0

∂z

)
(62)

where

Ue = 2α2100 sin(z)

De = D̄2+ 2α2
2

∑
m

12
m0 sin2(z)(D̄1m

2π2− am cos(z))−1

am = 2(α11̄mm + α21mm).

To a first approximation (in the spirit of the previous section) the effective diffusion
coefficient gives

De = D̄2+ 21.6
α2

2

D̄1
sin2(z)− 4.32

α2
2α1

D̄2
1

cos(z) sin2(z)+ 2.76
α3

2

D̄2
1

cos(z) sin2(z) (63)

whereasVe vanishes.
We omit the third and fourth terms in this expansion and using the results summarized

in equation (51) we can calculate the average diffusion coefficient which would be

Da ' D̄2

(
1+ 21.6α2

2

D̄1D̄2

)1/2

. (64)
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A similar calculation can be performed very easily for the case of particles with inertia
and the interesting result here would be that the average drift coefficient will no longer
vanish.

7. Conclusions

In this paper we have proposed an alternative approach to the problem of Taylor dispersion
using the slaving principle. The approach is easy to use even when the flow field is
periodic in the direction along which dispersion is studied. Furthermore, it is mathematically
transparent, hinging on physical intuition and thus enables us to consider more complicated
physical situations.

In an attempt to validate and illustrate it, the approach was tested on the simple shear
flow giving agreement with other works (e.g. [2]).

We then studied the problem of Taylor dispersion in the Taylor vortex, obtaining explicit
expressions for the transport coefficients. Since in general the effective transport coefficients
will be periodic functions of space, we have further proposed a way of deriving average
transport coefficients for such systems which will model in a satisfactory manner the large
scale evolution of the tracer probability distribution.

Finally, we have studied the effects of particle inertia, i.e. motion of a tracer with a
density different from that of the fluid, on Taylor dispersion in the Taylor vortex, and given
explicit expressions for the effective (local) transport coefficients of such tracers. As an
example, we have presented results for the Taylor dispersion in the Davey–DiPrima–Stuart
model for the Taylor vortex which is a perturbative solution of the full Navier–Stokes
equations for the Taylor–Couette flow in the small gap limit.
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Appendix

In this appendix we present the results of the next iteration of our proposed iterative scheme
from section 3. The second iteration for the amplitude of the modes gives

A(1)m = G(m, z)
{
H(z,m,A0)+

∑
m6=m′,0

F(m,m′, z)G(m′, z)H(z,m′, A0)

}
.

ExpandingG(m′, z) about the dominant term which isλm, we find an approximate result
using the second iteration which gives

A(1)m = G(m, z)
{
H(z,m,A0)+

∑
m6=m′,0

F(m,m′, z)
1

λm′

−F(m,m
′, z)

λ2
m′

(
3̄m′m′

σ ′m
Z′2(z)−

3m′m′

σ ′m
R2(z)

)
H(z,m′, A0)

}
+O

(
1

λ3
m′

)
(65)

from which we see that the second iteration will contribute corrections of higher order in
1/D whereD is the molecular diffusion.
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We can now calculate the effect of the corrections due to the second iteration on the
transport coefficients. Substituting (65) into (24) we find that the neutral mode satisfies the
transport equation

∂A0

∂t
+ ∂

∂z
(Ve(z)A0) = ∂

∂z
De(z)

∂A0

∂z

where

Ve(z) =
( ∞∑
m=1

3̄m030m

σ0σm
G(m, z)+

∞∑
m=1

∑
m6=m′,0

3̄m030m′

σ0σ ′m
G(m, z)G(m′, z)F (m,m′, z)

)

×R2(z)Z2(z)−
( ∞∑
m=1

3̄2
0m

σ0σm
G(m, z)

+
∞∑
m=1

∑
m6=m′,0

3̄m03̄0m′

σ0σm′
G(m, z)G(m′, z)F (m,m′, z)

)
Z2(z)Z

′
2(z)

and

De(z) = D +
(
3̄2

0m

σ0σm
G(m, z)+

∞∑
m=1

∑
m6=m′,0

3̄m03̄0m′

σ0σm′
G(m, z)G(m′, z)F (m,m′, z)

)
Z2(z)

2.

We now exploit the fact thatλm are considerably larger than3mm and3̄mm to expand
G(m, z) in a Taylor series. This will give an approximateDe of the form

De(z) = D +D1Z2(z)
2+D2Z2(z)

′Z2
2(z)+D3R2Z2(z)

2+D4Z2(z)
′Z2

2(z)

+D5R2Z2(z)
2+O(D−3)

whereD, D1, D2 andD3 are the same coefficients as those obtained using the diagonal
approximation (see section 3) and

D4 =
∞∑
m=1

∑
m6=m′,0

1

λmλm′

3̄m′,m

σm
D5 = −

∞∑
m=1

∑
m6=m′,0

1

λmλm′

3m′,m

σm
.

These two coefficients are of orderD−2 whereD is the coefficient of molecular diffusion.
The coefficientsD2 andD3 are of the same order, while the coefficientD1 is of orderD−1.
It is seen that the second iteration will leave unchanged the results up to orderD−1 and
will only change the results to orderD−2. In a similar manner one can see that the next
iteration of the scheme will introduce corrections of orderD−3.

A similar expansion can be performed forVe.
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